Richtige Fernseher haben Röhren!

Richtige Fernseher haben Röhren!

In Brief: On this site you will find pictures and information about some of the electronic, electrical and electrotechnical Obsolete technology relics that the Frank Sharp Private museum has accumulated over the years .
Premise: There are lots of vintage electrical and electronic items that have not survived well or even completely disappeared and forgotten.

Or are not being collected nowadays in proportion to their significance or prevalence in their heyday, this is bad and the main part of the death land. The heavy, ugly sarcophagus; models with few endearing qualities, devices that have some over-riding disadvantage to ownership such as heavy weight,toxicity or inflated value when dismantled, tend to be under-represented by all but the most comprehensive collections and museums. They get relegated to the bottom of the wants list, derided as 'more trouble than they are worth', or just forgotten entirely. As a result, I started to notice gaps in the current representation of the history of electronic and electrical technology to the interested member of the public.

Following this idea around a bit, convinced me that a collection of the peculiar alone could not hope to survive on its own merits, but a museum that gave equal display space to the popular and the unpopular, would bring things to the attention of the average person that he has previously passed by or been shielded from. It's a matter of culture. From this, the Obsolete Technology Tellye Web Museum concept developed and all my other things too. It's an open platform for all electrical Electronic TV technology to have its few, but NOT last, moments of fame in a working, hand-on environment. We'll never own Colossus or Faraday's first transformer, but I can show things that you can't see at the Science Museum, and let you play with things that the Smithsonian can't allow people to touch, because my remit is different.

There was a society once that was the polar opposite of our disposable, junk society. A whole nation was built on the idea of placing quality before quantity in all things. The goal was not “more and newer,” but “better and higher" .This attitude was reflected not only in the manufacturing of material goods, but also in the realms of art and architecture, as well as in the social fabric of everyday life. The goal was for each new cohort of children to stand on a higher level than the preceding cohort: they were to be healthier, stronger, more intelligent, and more vibrant in every way.

The society that prioritized human, social and material quality is a Winner. Truly, it is the high point of all Western civilization. Consequently, its defeat meant the defeat of civilization itself.

Today, the West is headed for the abyss. For the ultimate fate of our disposable society is for that society itself to be disposed of. And this will happen sooner, rather than later.

OLD, but ORIGINAL, Well made, Funny, Not remotely controlled............. and not Made in CHINA.

How to use the site:
- If you landed here via any Search Engine, you will get what you searched for and you can search more using the search this blog feature provided by Google. You can visit more posts scrolling the left blog archive of all posts of the month/year,
or you can click on the main photo-page to start from the main page. Doing so it starts from the most recent post to the older post simple clicking on the Older Post button on the bottom of each page after reading , post after post.

You can even visit all posts, time to time, when reaching the bottom end of each page and click on the Older Post button.

- If you arrived here at the main page via bookmark you can visit all the site scrolling the left blog archive of all posts of the month/year pointing were you want , or more simple You can even visit all blog posts, from newer to older, clicking at the end of each bottom page on the Older Post button.
So you can see all the blog/site content surfing all pages in it.

- The search this blog feature provided by Google is a real search engine. If you're pointing particular things it will search IT for you; or you can place a brand name in the search query at your choice and visit all results page by page. It's useful since the content of the site is very large.

Note that if you don't find what you searched for, try it after a period of time; the site is a never ending job !

Every CRT Television saved let revive knowledge, thoughts, moments of the past life which will never return again.........

Many contemporary "televisions" (more correctly named as displays) would not have this level of staying power, many would ware out or require major services within just five years or less and of course, there is that perennial bug bear of planned obsolescence where components are deliberately designed to fail and, or manufactured with limited edition specificities..... and without considering........picture......sound........quality........
..............The bitterness of poor quality is remembered long after the sweetness of todays funny gadgets low price has faded from memory........ . . . . . .....
Don't forget the past, the end of the world is upon us! Pretty soon it will all turn to dust!

Have big FUN ! !
-----------------------
©2010, 2011, 2012, 2013, 2014 Frank Sharp - You do not have permission to copy photos and words from this blog, and any content may be never used it for auctions or commercial purposes, however feel free to post anything you see here with a courtesy link back, btw a link to the original post here , is mandatory.
All sets and apparates appearing here are property of Engineer Frank Sharp. NOTHING HERE IS FOR SALE !
All posts are presented here for informative, historical and educative purposes as applicable within Fair Use.


Tuesday, March 27, 2012

PHILIPS X26K171 ROYAL COLOR 110 GIOTTO (PHILIPS K8) YEAR 1970.





The PHILIPS X26K171 is first PHILIPS COLOR TELEVISION with a 110° degree DELTA GUN CRT TUBE TYPE like the A66-140X with PHILIPS CHASSIS K8.

The PHILIPS  X26K171 ROYAL COLOR 110 GIOTTO (PHILIPS K8) OR Philips Goya 110L belongs to the third generation of hybrid colour tv sets, and it was the first colour tv set with a 110° deflection picture tube on the continent. The K8 chassis has still 15 valves. The total power consumption is 400 watts due to the higher deflection currents in comparison with 90° deflection colour tv sets. No other colour tv set, which was sold in Germany, has such a high total power consumption.

It has a  picture tube apparatus employing the so-called delta gun  shadow mask  The present invention relates to a color television picture tube  type color cathode-ray tube which is provided with three electron guns positioned respectively at the vertices of an equilateral triangle, " the so-called delta gun  shadow mask ".

To obtain a fine color picture on the screen of the cathode-ray tube of this type, the following requirements should be satisfied that the electron beam is emitted from each electron gun onto the center of each corresponding phosphor dot on the screen of the cathode-ray tube, the purity of colors is high and the electron beams are converged onto a group of phosphor dots.
These requirements can be comparatively easily satisfied in the case of the cathode-ray tube with a spherically formed screen, whereas it is difficult to satisfy the requirements in the case of a narrow-necked, wide-angle deflection cathode-ray tube. The wide angle deflection cathode-ray tube is advantageous in practical use because the distance between the electron guns and the screen is small and the screen is almost flat with a curvature approximate to that of a flat surface; however, it is necessary to control the electron beams so that the electron beams may be emitted exactly onto the 3-color phosphor dots on the screen because the incident angle and distance of the electron beams which reach the phosphor dots on the screen have the values proper to respective phospher dots.

Older types with PHILIPS CHASSIS K7 have had a 90° degree CRT TUBE like the A66-120X.

The set has 6 programs mechanic keyboard buttons type and potentiometric tuning search system.
The mechanical turret approach to television tuning has been used almost exclusively for the past 60 years. Even though replete with the inherent disadvantages of mechanical complexity, unreliability and cost, such apparatus has been technically capable of performing its intended function and as a result the consumer has had to bear the burdens associated with the device. However, with the " recent " Broadcast demands for parity of tuning for UHF and VHF channels, the increasing number of UHF and cable TV stations have imposed new tuning performance requirements which severely tax the capability of the mechanical turret tuner. Consequently, attempts are now being made to provide all electronic tuning to meet the new requirements.

The invention relates to a tuning unit with bandswitch for high frequency receivers, especially radio and television receivers, having a potentiometer system for the control of capacity diodes, the said potentiometer system consisting of a plurality of parallel resistance paths along which wiper contacts can be driven by means of screw spindles disposed adjacent one another in a common insulating material housing in which a bandswitch formed of metal rods is associated with each tuning spindle.

In these tuning units, the working voltages of the capacity diodes in the tuning circuits are recorded once a precise tuning to the desired frequency has been performed. A potentiometer tuning system has great advantages over the formerly used channel selectors operating with mechanically adjustable capacitors (tuning condensers) or mechanically adjustable inductances (variometers), mainly because it is not required to have such great precision in its tuning mechanism.

Tuning units with bandswitches formed of variable resistances and combined with interlocking pushbuttons controlling the supply of recorded working voltages to capacity diodes are known. Channel selection is accomplished by depressing the knobs, and the tuning or fine tuning are performed by turning the knobs. The resistances serving as voltage dividers in these tuning units are combined into a component unit such that they are in the form of a ladderlike pattern on a common insulating plate forming the cover of the housing in which the tuning spindles and wiper contacts corresponding to the variable resistances are housed. The number of resistances corresponds to the number of channels or frequencies which are to be recorded. The wiper contact picks up a voltage which, when applied to the capacity diodes determines their capacitance and hence the frequency of the corresponding oscillating circuit. The adjustment of the wipers is performed by turning the tuning spindle coupled to the tuning knob. By the depression of a button the electrical connection between a contact rod and a tuning spindle is brought about and thus the selected voltage is applied to the capacity diodes. Since the push buttons release one another, it is possible simply by depressing another button to tune to a different receiving frequency or a different channel, as the case may be.

 Moreover, using this arrangement, the only indication--during adjustment--of which channel is selected is by station identification.

In the end of the 60's  increasingly attention was focused on the varicap diode tuner as the latest, sophisticated means of television receiver frontend tuning in both colour and black and white sets.
 The main purpose of this article is to investigate the servicing problems associated with this comparatively new method of tuning.

First however let's briefly recap on the principles involved in this tuning system:

 The tuners use variable capacitance (or "varicap") diodes as the variable tuning elements: the effective capacitance of the diodes is controlled by the reverse bias applied across them, tuning being achieved by varying this voltage. As the reverse bias across a varicap diode is increased so its junction depletion region widens thus reducing its capacitance.
A VHF/ UHF television tuner is constructed in accordance with the present invention includes a preselector tuned circuit having a solid state voltage controlled capacitor as its tunable element, a radio frequency amplifier coupled to the preselector circuit and alsoother circuit to perfect the signal receiving capability and the application the like.

Considering the Mechanical Tuner Problems:

To get the servicing problems in perspective let us next consider the tuning arrangements previously used.
 The earliest of these, employed on v.h.f., was the switched tuner which was either of the turret or incremental type.
 The turret tuner substituted a coil bearing "biscuit" mounted on the rotating drum or turret when channels were changed. Twelve positions were normally provided, with a fine tuning knob to adjust the local oscillator frequency. As its name suggests the incremental tuner simply added more inductance to the tuned circuits at every downward channel movement: thus the highest inductance was present on channel one and the least on channel 12 (which normally covered 13 as well with manipulation of the fine tuner).
The movement towards u.h.f. TV working, initially with dual standard sets and later with single standard ones, brought about the need for u.h.f. tuners. In the earliest u.h.f. receivers valve tuners which were not particularly efficient were used.

The drive mechanism was usually a dual  speed rotary system calibrated from channels 21 to 68. Experience in the field indicated that 625 line television was in many cases considered by the viewer to be inferior to 405 -line reception, on account of the poor signal to noise ratio achieved by the valve tuners. Many viewers were not prepared to use external u.h.f. aerials of course, having achieved satisfactory reception on v.h.f. with an indoor aerial: this aggravated the situation even more.
Another aspect which caused difficulty was the care needed to tune in a u.h.f. channel using a rotary tuner covering the whole of Bands IV and V. Many viewers simply could not tune in BBC 2  or ZDF or ORF or any channel correctly with such a tuning mechanism, finding that they had passed right over the channel they wanted before realising what they had done.
The advent of transistor tuners rapidly improved the quality of u.h.f. reception but use of a rotary mechanism was continued by many manufacturers. Thus while potential reception was improved the same tuning difficulties remained and viewers continued to gravitate towards 405 line viewing using the "old faithful" switched tuner. The operational breakthrough came with the introduction of the push-button u.h.f. channel change. 

The mechanism is basically simple. Adjustable push buttons press down on a lever bar which in turn rotates the tuner's variable capacitors to the appropriate position. Each button is capable of tuning over the entire u.h.f. bands and this leads to customer confusion at times when after some adjustments which were too heavy handed they find themselves receiving ITV on a BBC button or a ORF and ZDF broadcasting or any channel possible !

Mechanical Faults:

 Mechanical tuning obviously has its snags. There are for example contact springs which earth the tuning capacitor and go intermittent. This gives rise to the most random tuning defects, capable of driving the. most patient viewer to a state of total exasperation. It is also possible for the rotation mechanism to hang up and jam intermittently, or just become sticky, so that the reset accuracy of the mechanism is impaired and the receiver has to be retuned every time the channel is changed.
The vanes in the tuning capacitor can also short out at different settings, thereby eliminating some channels. The  Varicap Tuner It will be seen then that mechanical defects can cause very irritating fault symptoms. If one thinks along the lines that anything mechanical is nasty, then the elimination of mechanical parts can only be to the good.

The logic of this is splendid provided the electronic replacement for the mechanical system is more reliable! Otherwise we are leaping out of the frying pan into the fire! In the light of experience gained with mechanical tuning devices it seems great that with the varicap tuner we have at last dispensed with the dreaded rotary tuning capacitor, replacing it instead with a variable voltage to the tuner. 
Let us think about this however since things are never quite as simple as they first appear. The tuning voltage has to be variable in order to tune the receiver. Obviously then a means of varying the voltage has to be provided to act as the tuning control.
As it is a voltage that has to be varied the tuning control takes the form of a potentiometer., Now we have returned to a mechanical system again, though in a less complex form.
A potentiometer is required for each channel, selected by pressing the appropriate channel button.

We have lost a tuning capacitor and its rotating mechanism and gained a set of pots and selector switches therefore. Provided the pots and switches are mechanically more reliable than the tuning capacitor we should be better off-or should we? 

Need for Voltage Stabilisation.
 The voltage selected by the pots cannot be allowed to drift otherwise the receiver will go off -tune. The voltage supply to the potentiometers has to be stabilised therefore and a stabilising zener diode or integrated circuit (TAA550) .is needed for this purpose.

Any failure in this part of the circuit will give rise to tuning drift or worse, a total loss of reception. A short-circuit TAA550 for example will completely remove the tuning voltage while if it is open circuit the tuning can vary with picture brightness. Likewise any intermittency in the potentiometers or associated switching and/or resistors can also cause problems.

Relative Reliability of Tuners:

 It  will be seen then that in order to lose our troublesome mechanical arrangement we have had to introduce considerably more electronics which we trust are going to be more reliable. In addition we have not so far considered the relative reliability of the varicap tuner itself compared with the mechanical type. Since two r.f. transistors are generally used to compensate for the reduced Q of the varicap tuned circuits we immediately have twice the likelihood of an r.f. stage breaking down! 
And being semiconductors the varicap diodes themselves are more likely to fail than the sections of a ganged tuning capacitor. It is reasonable then to conclude that if mechanical faults are the most prevalent the use of varicap tuners will make life easier. Mechanical faults are generally not too difficult to sort out however and the field engineer can often cope with them in the home. 
Can the same be said of the varicap tuner? It seems that this type of tuner does not need so much attention as its mechanical counterpart but is likely to throw up some much more difficult faults when it does, resulting in bench repairs being needed. So far my own experience has indicated that varicap tuning faults nearly always need servicing on the bench.
Generally speaking it seems true to say that varicap tuners themselves are adequately reliable: the snags result from the tuning system and stabilised power supply.

Tuning Drift with Varicap Tuners:

 If a varicap tuned receiver is constantly drifting off tune the +30V supply should be the number one suspect. It is best to connect an Avometer permanently to the supply so that it can be precisely monitored-if necessary write down the exact voltage measured.
 If the receiver drifts, check the voltage. If it has changed, even slightly, this may well be enough to be the cause of the fault. To pinpoint and confirm the diagnosis aerosol freezer should be applied to the stabiliser i.c. or zener. If the voltage returns to normal or changes wildly for the worse the stabiliser is almost certainly the cause of the trouble and should be replaced.
A prolonged soak test should then be carried out. Another point concerning varicap tuners arises with their use in colour receivers.


 There were  makers of the most expensive colour receiver on the market still didn't use a varicap tuner but instead use a mechanical one. The makers' claim is that the signal to-noise ratio of the varicap tuner is inadequate for their colour standards. Undoubtedly the results obtained on the receiver seem to confirm this. Interestingly, the same manufacturers use varicap tuners in their black -and -white receivers, and the tuning button system is often full of troublesome intermittent contacts. The varicap tuner has its advantages and disadvantages then. Probably the simplest comment would be to say that when it is good it is very very good but when it is bad it is horrid!

The PHILIPS CHASSIS K8 used in this set has a particular technology Tubes circuit in Line deflection and EHT parts using 2 Line flyback transformers in special circuit arrangement,

The K8 was Philips last hybrid colour chassis. It was the first to sport a 110 degrees delta CRT. More deflection power was needed and convergence circuitry was mostly active using transistors instead of passive as before.
It was made in 3 fundamentally different versions. The basic design was Dutch/Belgian as usual for the K series, and was designated K8, with variations K8B (for Belgian systems, 625 lines only) and K8L (tuner with separate push-buttons and a drawer instead of an integrated push-button/potmeter assembly). The K8L is never mentioned in the Model Number Survey but is marked as such on the schematic diagrams.

 The PHILIPS A66-140X was the first 110° deflection delta shadow mask colour picture tube. The iron-brass cover for shielding geomagnetic effects is placed now in the inside of the picture tube. Philips used colour difference concept for the colour output units. The PL 802 is for luminance output, three PCF 200 are for colour difference signal output. White balance is realized with three VDRs on the crt board. The white balance use the black level niveau as a reference for white balance control.

The German K8D used the same rather complex EHT cage as the K8 but the signal stages and controls were more advanced compared to the K8. It already used an IC in the colour decoder while touch controls and a wired remote were also available as options.

 The picture tube with 110° deflection is much shorter than a 66 cm. picture tube with 90° deflection. As a result, the whole set has a shorter depth than the 90° colour tv sets before. Deflection circuits and convergence circuits are more complex due to the higher deflection angle. The convergence board is placed behind a door on the right side of the set (viewed in front of the set). The convergence needs active parts with high-wattage transistors here in comparison to the total passive circuits in 90° colour tv sets to generate enough signal power for the correct geometry.

The K8 chassis is a further development of the K7 and K6 chassis. Tuner, IF and chroma circuits are solid state. The colour difference output unit, video output and sound are fitted with valves like in the K7 chassis. The large heat from the valves and the high power resistors burned the board of the chassis in the upper part.



List of sets known to have the K8/K8B/K8L (1970-1972), K8D (1970-1973) or K80 (1970-1973) chassis (below).

General models:
Various factories such as Eindoven (A), Brugge (AG), Monza (PM).
X26K171 K8
X26K172 K8
X26K176 K8L
X26K178 K8L
X26K181 K8B
X26K183 K8B
Austria?
A26K175
A26K176
Germany
Factory location Krefeld (KR)
Many more models probably exist.
D26K169 K8 (might be a K8D or if it’s a K8 it might not have been manufactured in Germany)
D26K193/82 K8D in Liesenkötter cabinet, wired remote
Sweden
S22K412 K80
S26K314 K80
S26K404 K8 (one known, made in the Netherlands or Belgium, never in Sweden?)
S26K414 K80
S26K415 K80
S26K416 K80
S26K417 K80
S26K418 K80
S26K515 K80M
S26K616 K80
S26K624 K80
Other brands or foreign Philips (unknown):
8103 K8
26BI171 K8 (the letters would point to an Italian B/W TV but the model is mentioned as a K8)
26K176 K8L
26K178 K8L
26SO171 K8
Other Brands (Erres only)
RS9615 K8
RS9616 K8
RS9625 K8
Other Brands (Aristona, Siera, Dux, etc.)
56K214 K80
56K912 K80
66K171 K8 (Aristona AR66K171, probably others) = X26K171
66K181 K8B
66K271 K8 = X26K172
66K304 K8
66K314 K80
66K613 K80
66K614 K80
66K616 K80
66K671 K8L (Aristona AR66K671, probably others) = X26K176
66K714 K80
66K814 K80
66K871 K8L = X26K178
66K914 K80
Siera D66S630 K8D


Semiconductors and the television technology reality changing......................

So far the history of television development has been entirely radio (and picture) valves centric. And it would stay so for another decade. In the background, however, an entirely new development was taking shape: semiconductors. Especially the concept of semiconductor diodes was not entirely new. 
During the war both in Germany and the US some diodes were developed as detector in radar systems, but they remained exotic. In 1946 the US war effort on these type of materials was published and available to its allies in a 28-volume overview. At Philips Research this triggered one group under dr. Piet Haaijman in the sector of Herre Rinia to a few researchers working on metal-based detectors, using such materials as selenium and germanium. These activities came into a completely new perspective when in 1947 the the transistor was invented by John Bardeen, Walter Brattain and William Shockley of Bell Labs. This sent a shock through the world of electronics, and also within Philips kicked off semiconductor research. In 1948 Evert Verweij, one of the three NatLab directors, visited the US and concluded that research should be focused on germanium as base material. 
The group of Haaijman was extended to accelerate the work on germanium diodes, whereas a second group under F. Stieltjes started work on the transistor. One of the young researchers in this group was J. Tummers, who would be the leading developer of transistors within Research. Especially the transistor was a hard nut to crack, and progress was slow, also because Bell Labs had disclosed only a minimum of details on the engineering of their transistor, while also the US Department of Defence pushed hard to keep it top secret. It was only by 1952, with the famous Bell Licensees Symposium, that Bell Labs shared the "transistor cook book" to a selected set of companies with which it has cross-license agreements. From Europe this included Philips, Siemens, AEG-Telefunken and GEC. So far the NatLab had worked on the point-contact transistor, but these were very sensitive and unreliable, and after the Bell Symposium they switched to grown junction transistors.

Quite quickly after the announcement of the transistor invention it became clear to the Philips management that this was an important development that the company could not ignore. By 1949 the research activities of the group of Piet Haaijman resulted in what was thought to be a producible germanium diode. At this point the HIG Elektronenbuizen decided it would create a dedicated Industriegroep Halfgeleiders (Industrial Group Semiconductors) with their HIG. On the one hand this was to give it the proper attention and focus, on the other hand it was to protect the radio valve group from distraction, giving its massive effort to role out the new families of television valves. At this time Jan van Vessem had succeeded Gerrit Alma as head of the Radiobuizen Labs, while ir H. Hazeu was the technical director of the HIG after Theo Tromp moved to the Philips board of directors in 1946. Hazeu and Tromp got along very well, and jointly pushed innovation, the importance of radio valves and picture tubes, but also recognized the importance and opportunities of semiconductors. Leader of the semiconductor activities became dr. Jan van der Spek. A production facility was built in Eindhoven and in 1950 the first products were delivered; the OA70 and OA50 diodes. The OA70 used germanium with a higher conductivity and consequently had a high bandwidth, making it fit for video detection. The OA50 was made or "regular" germanium and was a low frequency detector, so suitable for audio or synchronization signal detection. Because production was still unstable, the output was "binned" with lesser products sold as OA51, OA52 and OA56. By 1952 they were succeeded by the OA60 and OA61. Almost as soon as they appeared the germanium diodes were used by the Apparaten Lab for the functions as described. They were part of the TX1422 platform released in 1952, and thus in commercial sets from 1953.

As soon as the first generation diodes came available the company struggled with production capacity. The small-scale Eindhoven production facility was soon too small, and a second site was opened in Heerlen, but even that was not sufficient to cope with the demand. By the end of 1952 the pressure increased when, after the Bell Symposium, better transistors were in development. In a policy meeting where neither Tromp nor Hazeu were present especially the NatLab representative Herre Rinia proposed a massive switch from radio valves to semiconductors, with 50% of the HIG Elektronenbuizen R&D budget to be allocated to semiconductors. When he heard this Hazeu was shocked, and together with Tromp was able to reverse the decision. But it was decided that the HIG would put more resources into semiconductor development. Furthermore the Philips board gave the green light for the construction of a brand new large semiconductor factory in Nijmegen, construction of which was started immediately. It was also decided that all semiconductor developments were to be concentrated in Nijmegen too. By 1955 this plant had grown to 1100 employees, of which 122 in development.
Transistor developments in the meantime proved more problematic.
 The NatLab had, after initial work on point contact transistors, switched to the so-called growth or double-doping transistors, based on the information obtained after the Bell Symposium. By the end of 1952 they had made 100 transistors and proposed these be taken into production by the IG Halfgeleiders. The director of the Radiobuizen Lab Jan van Vessem and his staff were, however, not convinced of the reproducibility of this technology.
Van Vessem was convinced that the RCA technology of alloy junction transistors was much better. 
Due to rather blunt behaviour by Philips in the negotiations it took almost a year to obtain the desired license from RCA. 
Although a three first transistors were announced already in 1953, the OC10 to OC12, these were hardly producible and effectively never cae beyond the sample status. 
The first production transistors out of Nijmegen were the OC70 and OC71. Both were germanium PNP transistors in a glass encapsulation, suitable for audio and other low frequency applications, and launched in 1954. However, where the germanium diodes were adopted very quickly, it would take much longer for transistors to appear in the Philips television and we won't see them in the next platforms.


Koninklijke Philips Electronics N.V. (Royal Philips Electronics Inc.), most commonly known as Philips, (Euronext: PHIA, NYSE: PHG) is a multinational Dutch electronics corporation.

Philips is one of the largest electronics companies in the world. In 2009, its sales were €23.18 billion. The company employs 115,924 people in more than 60 countries.

Philips is organized in a number of sectors: Philips Consumer Lifestyles (formerly Philips Consumer Electronics and Philips Domestic Appliances and Personal Care), Philips Lighting and Philips Healthcare (formerly Philips Medical Systems).
The company was founded in 1891 by Gerard Philips, a maternal cousin of Karl Marx, in Eindhoven, Netherlands. Its first products were light bulbs and other electro-technical equipment. Its first factory survives as a museum devoted to light sculpture. In the 1920s, the company started to manufacture other products, such as vacuum tubes (also known worldwide as 'valves'), In 1927 they acquired the British electronic valve manufacturers Mullard and in 1932 the German tube manufacturer Valvo, both of which became subsidiaries. In 1939 they introduced their electric razor, the Philishave (marketed in the USA using the Norelco brand name).
Philips was also instrumental in the revival of the Stirling engine.

As a chip maker, Philips Semiconductors was among the Worldwide Top 20 Semiconductor Sales Leaders.

In December 2005 Philips announced its intention to make the Semiconductor Division into a separate legal entity. This process of "disentanglement" was completed on 1 October 2006.

On 2 August 2006, Philips completed an agreement to sell a controlling 80.1% stake in Philips Semiconductors to a consortium of private equity investors consisting of Kohlberg Kravis Roberts & Co. (KKR), Silver Lake Partners and AlpInvest Partners. The sale completed a process, which began December 2005, with its decision to create a separate legal entity for Semiconductors and to pursue all strategic options. Six weeks before, ahead of its online dialogue, through a letter to 8,000 of Philips managers, it was announced that they were speeding up the transformation of Semiconductors into a stand-alone entity with majority ownership by a third party. It was stated then that "this is much more than just a transaction: it is probably the most significant milestone on a long journey of change for Philips and the beginning of a new chapter for everyone – especially those involved with Semiconductors".

In its more than 115 year history, this counts as a big step that is definitely changing the profile of the company. Philips was one of few companies that successfully made the transition from the electrical world of the 19th century into the electronic age, starting its semiconductor activity in 1953 and building it into a global top 10 player in its industry. As such, Semiconductors was at the heart of many innovations in Philips over the past 50 years.

Agreeing to start a process that would ultimately lead to the decision to sell the Semiconductor Division therefore was one of the toughest decisions that the Board of Management ever had to make.

On 21 August 2006, Bain Capital and Apax Partners announced that they had signed definitive commitments to join the expanded consortium headed by KKR that is to acquire the controlling stake in the Semiconductors Division.

On 1 September 2006, it was announced in Berlin that the name of the new semiconductor company founded by Philips is NXP Semiconductors.

Coinciding with the sale of the Semiconductor Division, Philips also announced that they would drop the word 'Electronics' from the company name, thus becoming simply Koninklijke Philips N.V. (Royal Philips N.V.).


PHILIPS FOUNDATION:

The foundations of Philips were laid in 1891 when Anton and Gerard Philips established Philips & Co. in Eindhoven, the Netherlands. The company begun manufacturing carbon-filament lamps and by the turn of the century, had become one of the largest producers in Europe. Stimulated by the industrial revolution in Europe, Philips’ first research laboratory started introducing its first innovations in the x-ray and radio technology. Over the years, the list of inventions has only been growing to include many breakthroughs that have continued to enrich people’s everyday lives.



In the early years of Philips &; Co., the representation of the company name took many forms: one was an emblem formed by the initial letters of Philips ; Co., and another was the word Philips printed on the glass of metal filament lamps.



One of the very first campaigns was launched in 1898 when Anton Philips used a range of postcards showing the Dutch national costumes as marketing tools. Each letter of the word Philips was printed in a row of light bulbs as at the top of every card. In the late 1920s, the Philips name began to take on the form that we recognize today.



The now familiar Philips waves and stars first appeared in 1926 on the packaging of miniwatt radio valves, as well as on the Philigraph, an early sound recording device. The waves symbolized radio waves, while the stars represented the ether of the evening sky through which the radio waves would travel.



In 1930 it was the first time that the four stars flanking the three waves were placed together in a circle. After that, the stars and waves started appearing on radios and gramophones, featuring this circle as part of their design. Gradually the use of the circle emblem was then extended to advertising materials and other products.



At this time Philips’ business activities were expanding rapidly and the company wanted to find a trademark that would uniquely represent Philips, but one that would also avoid legal problems with the owners of other well-known circular emblems. This wish resulted in the combination of the Philips circle and the wordmark within the shield emblem.



In 1938, the Philips shield made its first appearance. Although modified over the years, the basic design has remained constant ever since and, together with the wordmark, gives Philips the distinctive identity that is still embraced today.

The first steps of CRT production by Philips started in the thirties with the Deutsche Philips Electro-Spezial gesellschaft in Germany and the Philips NatLab (Physics laboratory) in Holland. After the introduction of television in Europe, just after WWII there was a growing demand of television sets and oscilloscope equipment. Philips in Holland was ambitious and started experimental television in 1948. Philips wanted to be the biggest on this market. From 1948 there was a small Philips production of television and oscilloscope tubes in the town of Eindhoven which soon developed in mass production. In 1976 a part of the Philips CRT production went to the town of Heerlen and produced its 500.000'th tube in 1986. In 1994 the company in Heerlen changed from Philips into CRT-Heerlen B.V. specialized in the production of small monochrome CRT's for the professional market and reached 1.000.000 produced tubes in 1996. In this stage the company was able to produce very complicated tubes like storage CRT's.
In 2001 the company merged into Professional Display Systems, PDS worked on LCD and Plasma technology but went bankrupt in 2009. The employees managed a start through as Cathode Ray Technology which now in 2012 has to close it's doors due to the lack of sales in a stressed market. Their main production was small CRT's for oscilloscope, radar and large medical use (X-ray displays). New experimental developments were small Electron Microscopy, 3D-TV displays, X-Ray purposes and Cathode Ray Lithography for wafer production. Unfortunately the time gap to develop these new products was too big.


28 of September 2012, Cathode Ray Technology (the Netherlands), the last Cathode Ray Tube factory in Europe closed. Ironically the company never experienced so much publicity as now, all of the media brought the news in Holland about the closure. In fact this means the end of mass production 115 years after Ferdinand Braun his invention. The rapid introduction and acceptation of LCD and Plasma displays was responsible for a drastic decrease in sales. Despite the replacement market for the next couple of years in the industrial, medical and avionics sector.
The numbers are small and the last few CRT producers worldwide are in heavy competition.

Gerard Philips:

Gerard Leonard Frederik Philips (October 9, 1858, in Zaltbommel – January 27, 1942, in The Hague, Netherlands) was a Dutch industrialist, co-founder (with his father Frederik Philips) of the Philips Company as a family business in 1891. Gerard and his younger brother Anton Philips changed the business to a corporation by founding in 1912 the NV Philips' Gloeilampenfabrieken. As the first CEO of the Philips corporation, Gerard laid with Anton the base for the later Philips multinational.



Early life and education

Gerard was the first son of Benjamin Frederik David Philips (1 December 1830 – 12 June 1900) and Maria Heyligers (1836 – 1921). His father was active in the tobacco business and a banker at Zaltbommel in the Netherlands; he was a first cousin of Karl Marx.



Career

Gerard Philips became interested in electronics and engineering. Frederik was the financier for Gerard's purchase of the old factory building in Eindhoven where he established the first factory in 1891. They operated the Philips Company as a family business for more than a decade.



Marriage and family

On March 19, 1896 Philips married Johanna van der Willigen (30 September 1862 – 1942). They had no children.

Gerard was an uncle of Frits Philips, whom he and his brother brought into the business. Later they brought in his brother's grandson, Franz Otten.


Gerard and his brother Anton supported education and social programs in Eindhoven, including the Philips Sport Vereniging (Philips Sports Association), which they founded. From it the professional football (soccer) department developed into the independent Philips Sport Vereniging N.V.



Anton Philips:

Anton Frederik Philips (March 14, 1874, Zaltbommel, Gelderland – October 7, 1951, Eindhoven) co-founded Royal Philips Electronics N.V. in 1912 with his older brother Gerard Philips in Eindhoven, the Netherlands. He served as CEO of the company from 1922 to 1939.



Early life and education

Anton was born to Maria Heyligers (1836 – 1921) and Benjamin Frederik David Philips (December 1, 1830 – June 12, 1900). His father was active in the tobacco business and a banker at Zaltbommel in the Netherlands. (He was a first cousin to Karl Marx.) Anton's brother Gerard was 16 years older.



Career

In May 1891 the father Frederik was the financier and, with his son Gerard Philips, co-founder of the Philips Company as a family business. In 1912 Anton joined the firm, which they named Royal Philips Electronics N.V.

During World War I, Anton Philips managed to increase sales by taking advantage of a boycott of German goods in several countries. He provided the markets with alternative products.

Anton (and his brother Gerard) are remembered as being civic-minded. In Eindhoven they supported education and social programs and facilities, such as the soccer department of the Philips Sports Association as the best-known example.

Anton Philips brought his son Frits Philips and grandson Franz Otten into the company in their times. Anton took the young Franz Otten with him and other family members to escape the Netherlands just before the Nazi Occupation during World War II; they went to the United States. They returned after the war.

His son Frits Philips chose to stay and manage the company during the occupation; he survived several months at the concentration camp of Vught after his workers went on strike. He saved the lives of 382 Jews by claiming them as indispensable to his factory, and thus helped them evade Nazi roundups and deportation to concentration camps.

Philips died in Eindhoven in 1951.



Marriage and family

Philips married Anne Henriëtte Elisabeth Maria de Jongh (Amersfoort, May 30, 1878 – Eindhoven, March 7, 1970). They had the following children:

* Anna Elisabeth Cornelia Philips (June 19, 1899 – ?), married in 1925 to Pieter Franciscus Sylvester Otten (1895 – 1969), and had:
o Diek Otten
o Franz Otten (b. c. 1928 - d. 1967), manager in the Dutch electronics company Philips
* Frederik Jacques Philips (1905-2005)
* Henriëtte Anna Philips (Eindhoven, October 26, 1906 – ?), married firstly to A. Knappert (d. 1932), without issue; married secondly to G. Jonkheer Sandberg (d. September 5, 1935), without issue; and married thirdly in New York City, New York, on September 29, 1938 to Jonkheer Gerrit van Riemsdijk (Aerdenhout, January 10, 1911 – Eindhoven, November 8, 2005). They had the following children:
o ..., Jonkheerin Gerrit van Riemsdijk (b. Waalre, October 2, 1939), married at Waalre on February 17, 1968 to Johannes Jasper Tuijt (b. Atjeh, Koeta Radja, March 10, 1930), son of Jacobus Tuijt and wife Hedwig Jager, without issue
o ..., Jonkheerin Gerrit van Riemsdijk (b. Waalre, April 3, 1946), married firstly at Calvados, Falaise, on June 6, 1974 to Martinus Jan Petrus Vermooten (Utrecht, September 16, 1939 – Falaise, August 29, 1978), son of Martinus Vermooten and wife Anna Pieternella Hendrika Kwantes, without issue; married secondly in Paris on December 12, 1981 to Jean Yves Louis Bedos (Calvados, Rémy, January 9, 1947 – Calvados, Lisieux, October 5, 1982), son of Georges Charles Bedos and wife Henriette Louise Piel, without issue; and married thirdly at Manche, Sartilly, on September 21, 1985 to Arnaud Evain (b. Ardennes, Sedan, July 7, 1952), son of Jean Claude Evain and wife Flore Halleux, without issue
o ..., Jonkheerin Gerrit van Riemsdijk (b. Waalre, September 4, 1948), married at Waalre, October 28, 1972 to Elie Johan François van Dissel (b. Eindhoven, October 9, 1948), son of Willem Pieter
Jacob van Dissel and wife Francisca Frederike Marie Wirtz, without issue.



(To see the Internal Chassis Just click on Older Post Button on bottom page, that's simple !)





A comment...........of a 1996 reality ..................
Philips, which seems to be a perennial walking wounded case. The company had appeared to be on the mend after a worldwide cost- cutting programme which was started five years ago when Jan Timmer took over as chairman.
 But, following a sharp profits fall, with the company's first quarterly loss since 1992, a further shake up is being undertaken.
The difficulty is that the company operates in a mature market, in which prices are falling at an annual rate of six per cent. Manufacturers are competing by cutting costs to gain a larger share of static demand. It's not a situation in which any firm that does its own manufacturing can achieve much. Philips' latest plan involves an overall loss of 6,000 jobs in its consumer electronics business, with far greater reliance placed on a group of external suppliers which are referred to as "a cluster of dedicated subcontractors".

This is an approach that was pioneered many years ago by major Japanese manufacturers. Rather than make everything yourself, you rely on subcontractors who, in return, rely on you for their main source of work. It is hardly a cosy arrangement: the whole point seems to be that the major fain can exert pressure on its subcontractors, thereby - in theory - achieving optimum efficiency and cost-effectiveness. What happens when lower and lower prices are demanded for subcontracted work is not made clear.

The whole edifice could collapse. However that might be, this is the course on which Philips has now embarked. The company is also to carry out distribution, sales and marketing on a regional rather than a national basis, and has said that it will not support Grundig's losses after this year.

But Philips' chief financial officer Dudley Eustace has said that it has "no intention of abandoning the television and audio business". One has to assume that the subcontracting will also be done on an international basis, as major Japanese firms have had to do. There is a sense of déjà vu about this, though one wishes Philips well - it is still one of the major contributors to research and development in our industry.

Toshiba, which has also just appointed a new top man, Taizo Nishimoro, provides an interesting contrast. Mr Nishimoro thinks that the western emphasis on sales and marketing rather than engineering is the way to go. So the whole industry seems to be moving full circle. Taizo Nishimoro has become the first non engineering president of Toshiba. Where the company cannot compete effectively on its own, he intends to seek international alliances or go for closures. He put it as follows. "The technology and the businesses we are engaged in are getting more complex.
 In these circumstances, if we try to do everything ourselves we are making a mistake." Here's how Minoru Makihara, who became head of Mitsubishi Corporation four years ago, sees it. "Technologies are now moving so fast that it is impossible for the top manager to know all the details. 
Companies are now looking for generalists who can understand broad changes, delegate and provide leadership." Corporate change indeed amongst our oriental colleagues. Major firms the world over are facing similar problems and having to adopt similar policies.
In a mature market such as consumer electronics, you have to rely on marketing to squeeze the last little bit of advantage from such developments as Dolby sound and other added value features. The consumer electronics industry has been hoping that the digital video disc would come to its aid and get sales and profits moving ahead.
The DVD was due to be released in Sept 1996 , but we are unlikely to hear much more about it yet awhile. There's no problem with the technology: the difficulty is with licensing and software. There is obviously no point in launching it without adequate software support. But the movie companies, which control most of the required supply of software, are concerned that a recordable version of the disc, due in a couple of years' time, would be a gift to pirates worldwide. Concessions have been made by the electronics industry, in particular that different disc formats should be used in different parts of the world. But a curious problem has arisen.
 The other main use of the DVD is as a ROM in computer systems. For this application flexible copying facilities are a major requirement. But the movie companies are unwilling to agree to this. At present the situation is deadlocked and the great hope of an autumn launch, all important for sales, has had to be postponed. Next year maybe? It's a great pity, since the DVD has much to offer.
There's a lot of sad news on the retail side as well. Colorvision has been placed in administrative receivership in 1996 , with a threat to 800 jobs at its 76 stores, while the Rumbelows shops that were taken over by computer retailer Escom have suffered a similar fate. The receivers have closed down the UK chain with the loss of 850 jobs at some 150 stores. Nothing seems to be going right just now.

Publications:

A. Heerding: The origin of the Dutch incandescent lamp industry. (Vol. 1 of The history of N.V. Philips gloeilampenfabriek). Cambridge, Cambridge University Press, 1986. ISBN 0-521-32169-7
A. Heerding: A company of many parts. (Vol. 2 of The history of N.V. Philips' gloeilampenfabrieken). Cambridge, Cambridge University Press, 1988. ISBN 0-521-32170-0
I.J. Blanken: The development of N.V. Philips' Gloeilampenfabrieken into a major electrical group. Zaltbommel, European Library, 1999. (Vol. 3 of The history of Philips Electronics N.V.). ISBN 90-288-1439-6
I.J. Blanken: Under German rule. Zaltbommel, European Library, 1999. (Vol. 4 of The history of Philips Electronics N.V). ISBN 90-288-1440-X

References:

"Philips Annual Report 2018". Philips Results. 27 February 2019. Retrieved 6 March 2019.
"Philips Greenpeace International". Greenpeace International. Archived from the original on 31 October 2010. Retrieved 7 January 2011.
"Philips Annual Report 2018 - Compare the previous 5 years". Philips Results. 27 February 2019. Retrieved 6 March 2019.
"Annual Report 2014". Philips. Retrieved 19 August 2012.
https://www.industryweek.com/global-economy/philips-drops-electronics-name-strategy-switch
"Börse Frankfurt (Frankfurt Stock Exchange): Stock market quotes, charts and news". Boerse-frankfurt.de. Retrieved 7 April 2018.
"Philips Museum". Philips-museum.com. Retrieved 30 December 2016.
C.M. Hargreaves (1991). The Philips Stirling Engine. Elsevier Science. ISBN 0-444-88463-7. pp.28–30
Philips Technical Review Vol.9 No.4 page 97 (1947)
C.M. Hargreaves (1991), Fig. 3
C.M. Hargreaves (1991), p.61
C.M. Hargreaves (1991), p.77
"Philips Electronics NV | Dutch manufacturer". Encyclopedia Britannica.
"BBC - WW2 People's War - Operation Oyster, Part 1". Bbc.co.uk. Retrieved 30 December 2016.
Everitt, Chris; Middlebrook, Martin (2 April 2014). "The Bomber Command War Diaries: An Operational Reference Book". Pen and Sword. Retrieved 30 December 2016 – via Google Books.
Bruce, Mr A I. "30th March 1943 WWII Timeline". Wehrmacht-history.com. Archived from the original on 12 February 2017. Retrieved 30 December 2016.
"Frits Philips celebrates 100th birthday". Philips. 15 April 2005. Retrieved 10 January 2015.
The Encyclopedia of the Righteous Among the Nations: Rescuers of Jews during the Holocaust: The Netherlands, Jerusalem: Yad Vashem, 2004, pp. 596–597
"PHILIPS Light Tower Complex - The Netherlands", Reynaers-solutions.com, Reynaers Aluminium, archived from the original on 20 January 2012, retrieved 12 September 2011
"Waarom stopt Philips met zelf televisies maken?". de Volkskrant. 18 April 2011. Retrieved 18 April 2011.
"BFI – Film & TV Database – The Philips Time Machine (1977)". The British Film Institute Web Database. Retrieved 16 February 2010.
Snow, Blake (5 May 2007). "The 10 Worst-Selling Consoles of All Time". GamePro.com. Archived from the original on 8 May 2007. Retrieved 1 November 2016.
https://www.trouw.nl/home/philips-gaat-aan-naam-eindelijk-het-woord-koninklijke-toevoegen~a0329b2a/
"Philips Completes Acquisition Agilent Technologies' Healthcare Solutions Group". Thefreelibrary.com. Retrieved 6 January 2017.
"Philips electronics to buy lifeline to expand in consumer health". Wsj.com. Retrieved 7 April 2018.
"Philips to Acquire Healthcare Informatics Company XIMIS Inc. to Strengthen Presence in the Healthcare Information Technology Market". Finanznachrichten.de. Retrieved 7 April 2018.
"News center - Philips". Arquivo.pt. Archived from the original on 16 May 2016. Retrieved 7 April 2018.
"Philips completes acquisition of US-based VISICU". Newscenter.philips.com. 21 February 2008. Retrieved 24 November 2012.
NRC Handelsblad, 4 September 2010 Het nieuwe Philips wordt blij van een iPad-hoesje/The new Philips becomes happy from an iPad cover, Dutch original:" 'We zijn geen high-tech bedrijf meer, het gaat erom dat de technologieën introduceren die breed gedragen worden door de consument', zegt Valk [..] Consumer Lifestyle is nu zodanig ingericht dat er geen jaren meer gewerkt wordt aan uitvindingen die weinig kans van slagen hebben. [..]De Philips staf windt er geen doekjes om dat het bedrijf niet altijd voorop loopt bij de technologische ontwikkelingen in consumentengoederen."
"Philips to merge Preethi biz in future". Moneycontrol.com. 5 September 2012. Retrieved 6 January 2017.
"Sectra news and press releases - Sectra and Philips sign large mammography modality acquisition deal". Sectra.com. Archived from the original on 22 April 2016. Retrieved 8 April 2016.
"Philips to cut 4,500 jobs". The Guardian. 17 October 2011.
"Philips Electronics cuts another 2,200 jobs". Bbc.co.uk. 11 September 2012. Retrieved 7 April 2018.
Lezhnev, Sasha; Alex Hellmuth (August 2012). "Taking Conflict Out of Consumer Gadgets: Company Rankings on Conflict Minerals 2012" (PDF). Enough Project. Retrieved 17 August 2012.
"Philips, LG Electronics, 4 others fined 1.47 billion Euros for EU cartel". The Economic Times. 5 December 2012. Retrieved 5 December 2012.
Van, Robert. (29 January 2013) Philips Exits Consumer Electronics - The Source - WSJ. Blogs.wsj.com. Retrieved on 2013-08-16.
"Philips to exit hi-fis and DVD players". BBC News. 29 January 2013. Retrieved 2 February 2013.
"Philips exits shrinking home entertainment business". Reuters. 29 January 2013. Retrieved 2 February 2013.
Philips to take legal action against Funai. Broadbandtvnews.com (25 October 2013). Retrieved on 2013-12-09.
Sterling, Toby; Mari Yamaguchi. "Philips Breaks off Deal With Funai". ABC News. Amsterdam. Associated Press. Archived from the original on 2 November 2013. Retrieved 22 June 2014.
"Philips announces decision by ICC International Court of Arbitration in Funai arbitration case". Philips Electronics. 2016-04-26. Retrieved 2016-07-23.
"Paradox Engineering and Philips Lighting working together on smart city solutions". startupticker.ch. Retrieved on September 2013.
"Koninklijke Philips Electronics N.V.: Name change" (PDF). eurex. 15 May 2013. Retrieved 10 July 2013.
"Philips unveils new brand direction centered around innovation and people". Newscenter.philips.com. Retrieved 20 November 2013.
"Dutch electronics giant Philips plans to split business". Bbc.com. Retrieved 23 September 2014.
Tartwijk, Maarten Van (31 March 2015). "Philips Sells Majority Stake in LED Components, Automotive Business". Wall Street Journal. Retrieved 30 December 2016.
Escritt, Thomas. "Philips expands in medical devices with $1.2 billion Volcano deal". Reuters.com. Retrieved 7 April 2018.
"Subscribe to read". Ft.com. Retrieved 30 December 2016.
"Philips lighting is now Signify". Signify. 2018-05-16. Retrieved 2018-07-10.
Whitaker, Tim (19 August 2005). "Analysis: Philips acquires controlling stake in Lumileds". www.ledsmagazine.com. Retrieved 2019-03-06.
"Philips announces 100% ownership of Lumileds". www.ledsmagazine.com. 1 January 2007. Retrieved 2019-03-06.
"Lumileds Officially an Independent Company as Funds Affiliated with Apollo Global Management and Philips Complete Transaction". Lumileds. Retrieved 2019-03-06.
"Interactive world maps". Annualreport2013.philips.com. Retrieved 30 December 2016.
Nieuwhof, Marc (15 November 2010). "IP.Philips.com". IP.Philips.com. Retrieved 27 January 2011.
"Archived copy". Archived from the original on 15 August 2016. Retrieved 11 July 2016.
"(Company profile – Philips Hong Kong)". Philips.com.hk. Retrieved 27 January 2011.
"珠海经济特区飞利浦家庭电器有限公司联系方式_信用报告_工商信息-启信宝". Qixin.com. Retrieved 7 April 2018.
Philips opens lighting center in China Automotive News Report – 1 May 2008
"Bangalore.philips.com". Bangalore.philips.com. Retrieved 24 November 2012.
"India's Most Trusted Brands 2014". Archived from the original on 2 May 2015.
"Philips Israel- Company Overview". Philips.co.il. Retrieved 1 May 2010.
"Philips Pakistan - Company Overview". Philips.com.pk. Retrieved 17 October 2011.
"Philips Deutschland - Philips". Philips.de. Retrieved 30 December 2016.
"Philips Portuguesa". Restosdecoleccao.blogspot.pt. Retrieved 7 April 2018.
"História Local - Philips". Philips.pt. Retrieved 30 December 2016.
"Google Maps". Google.pt. Retrieved 30 December 2016.
Portugal, Philips. "Philips Portugal manufacturer in P, radio technology from Po". Radiomuseum.org. Retrieved 30 December 2016.
"Artigos Project : Global Report Volume 20" (PDF). Pardalmonteiro.com. Archived from the original (PDF) on 3 March 2016. Retrieved 7 April 2018.
"Philips - Portugal". Philips.pt. Retrieved 30 December 2016.
"philips uk - Google Maps". Maps.google.co.uk. Retrieved 24 November 2012.
"Dutch firm Philips to move North American headquarters from Andover to Cambridge". The Boston Globe. Retrieved 7 April 2018.
"Philips Brasil Home Page". 30 December 1996. Archived from the original on 30 December 1996. Retrieved 7 April 2018.
John Biggs, Tech Crunch. "Welcome To The Future: Polymer Vision Demos SVGA Rollable Screen." 27 May 2011. Retrieved 27 May 2011.
Lewis, Gareth (15 July 2009). "50 jobs go at Polymer Vision". Southern Daily Echo. Retrieved 6 January 2016.
"Products & Solutions". Philips Healthcare. Retrieved 28 January 2012.
"LED 12.5W A19 Soft White 12.5W (60W) Dimmable A19". Energy-saving light bulbs. Philips.
"Indoor Luminaires". Philips Lighting. Retrieved 4 March 2016.
"Outdoor Luminaires". Philips Lighting. Retrieved 4 March 2016.
"Lamps". Philips Lighting. Retrieved 4 March 2016.
"Lighting Controls". Philips Lighting. Retrieved 27 June 2016.
"Digital projection lighting". Philips Lighting. Retrieved 27 June 2016.
"Horticulture". Philips Lighting. Retrieved 27 June 2016.
"Solar". Philips Lighting. Retrieved 27 June 2016.
"Lighting systems for office & industry". Philips Lighting. Retrieved 4 March 2016.
"Retail and hospitality systems". Philips Lighting. Retrieved 4 March 2016.
"Lighting systems: for public spaces". Philips Lighting. Retrieved 4 March 2016.
"Choose a bulb". Philips Lighting. Retrieved 27 June 2016.
"Choose a lamp". Philips Lighting. Retrieved 27 June 2016.
"Philips Hue homepage". Philips Lighting. Retrieved 27 June 2016.
"The 64 Slice CT Scanner". Web.archive.org. Archived from the original on 10 March 2016. Retrieved 30 December 2016.
"Philips Shield Wordmark Timeline" (JPG). Philips.com. Retrieved 7 April 2018.
"Platform for Accelerating the Circular Economy". Platform for Accelerating the Circular Economy. Retrieved 2019-04-02.
"https://www.philips.com/a-w/about/news/archive/standard/news/articles/2018/20180124-philips-spearheads-the-circular-economy-with-firm-2020-pledge.html". External link in |title= (help)
"History of the Ellen MacArthur Foundation". www.ellenmacarthurfoundation.org. Retrieved 2019-04-02.
"Ford tops Interbrand's forth annual ranking as the "greenest" brand in 2014". POPSOP. 13 August 2014. Retrieved 6 March 2019.
"Philips – Our Green Products". Philips. Retrieved 7 January 2011.
Margery Conner, EE Times. "$10M L Prize goes to Philips for 60W replacement LED bulb." 3 August 2011. Retrieved 5 August 2011.
"DOE Announces Philips as First Winner of the L Prize Competition". US Department of Energy. Archived from the original on 6 August 2011. Retrieved 6 August 2011.
"Guide to Greener Electronics | Greenpeace International". Greenpeace.org. Retrieved 24 November 2012.
"Guide to Greener Electronics – Greenpeace International". Greenpeace International. Retrieved 14 November 2011.

Einzelnachweise:

Supervisory Board. In: philips.com
A Guide to Greener Electronics. In: greenpeace.org

[1] In: philips.com

[2] In: philips.com

Gibson-Insolvenz: Philips vergibt Lizenzrechte an TPV Technology. 25. Mai 2018, abgerufen am 6. April 2019 (deutsch).

Philips and TPV to enter global brand license agreement for audio and video products and accessories. Abgerufen am 6. April 2019 (englisch).

Our heritage - Company - About. Abgerufen am 6. April 2019 (englisch).

Instituut voor Nederlandse Geschiedenis: Biografie Gerard Leonard Frederik Philips (niederländisch), abgefragt am 28. August 2009

Unternehmensgeschichte von Philips in Deutschland. In: euroarchiveguide.org (englisch)

Philips 2501. In: radiomuseum.org. Abgerufen am 14. März 2016.

PerfectDraft | Anheuser-Busch InBev Deutschland. Abgerufen am 6. April 2019.

philips.de

Philips Forschung in Aachen schließt. In: Aachener Nachrichten, 5. Oktober 2009

Philips-Beschäftigte demonstrieren gegen Schließung. In: Aachener Nachrichten, 9. Oktober 2009

Philips Forscher suchen nach rettendem Strohhalm. In: Aachener Nachrichten, 9. Oktober 2009

heise online: Philips gliedert Fernsehsparte aus. Abgerufen am 6. April 2019.

heise online: TPV übernimmt Fernsehsparte von Philips. Abgerufen am 6. April 2019.

Das Unternehmen TP Vision startet heute mit der Vermarktung von Philips TVs. Abgerufen am 6. April 2019 (Schweizer Hochdeutsch).

Philips trennt sich von Unterhaltungselektronik. In: Ingenieur360.de. 22. Januar 2014, abgerufen am 6. April 2019 (deutsch).

Neue Philips-Strategie geht auf – Auch Sparprogramm macht sich bezahlt. In: ORF.at, 21. Oktober 2013

Koninklijke Philips Electronics N. V.: Namensänderung. (pdf; 17 kB) eurex, 15. Mai 2013, abgerufen am 9. Juli 2013.

Philips Unternehmensprofil. Philips Website, abgerufen am 9. Juli 2013.

Übernahme gescheitert… Philips Unterhaltungselektronik-Sparte geht nicht an Funai Electric. In: sempre-audio.at

Philips verkauft WOOX Innovations an Gibson Brands. In: philips.com

Philips: Verkauf von Lichtsparte wird abgesagt. (handelsblatt.com [abgerufen am 24. Mai 2018]).

Philips Lighting: Lichtsparte kommt an die Börse. (handelsblatt.com [abgerufen am 24. Mai 2018]).

Philips Lighting: Vollständige Trennung von Lichtsparte geht voran. (handelsblatt.com [abgerufen am 24. Mai 2018]).

Philips Lighting kündigt Änderung des Firmennamens in Signify unter Beibehaltung der Marke Philips für seine Produkte an. In: Philips. (philips.de [abgerufen am 24. Mai 2018]).

Philips Completes Acquisition of US-Based Color Kinetics, Further Strengthening Leading Position in LED Lighting Systems, Components and Technologies. In: finanznachrichten.de

Philips buys Canadian solid state lighting company TIR Systems for 49 mln eur. In: finanznachrichten.de

http://www.newscenter.philips.com/main/standard/about/news/press/archive/2006/article-15403.wpd

http://www.newscenter.philips.com/main/standard/about/news/press/20090727_coffee.wpd

http://www.newscenter.philips.com/main/standard/news/press/2011/20110124_acquisition_preethi.wpd

Philips Unternehmensprofil. Abgerufen am 24. Mai 2018.

Philips Firmenzentrale. Abgerufen am 24. Mai 2018.

Hamburger Abendblatt - Hamburg: Neuer Chef für Philips Deutschland ist ein Niederländer. (abendblatt.de [abgerufen am 24. Mai 2018]).

Philips eröffnet Health Innovation Port. Abgerufen am 24. Mai 2018.

Weltweit erster LCD-Fernseher im 21:9 Kinoformat. In: Heise.de, 13. Januar 2009

HUE 1st Review - Geniales LED Licht System! In: YouTube.com, 29. Oktober 2012

Bluetooth connected toothbrush. In: Philips.com. Abgerufen am 31. August 2017.

Philips Innovation. Abgerufen am 24. Mai 2018.

European Commision: European Union Contest for Young Scientists

Anzeige in: Der Spiegel, Heft 40, 1. Oktober 1973, S. 151 (online)

Karl Sabbagh: Young scientists compete in Europe. In: New Scientist, 10. Juni 1971, S. 639–640 (online bei Google Books)

Jetzt bewerben: Forschungsförderpreis Delir-Management von DIVI und Philips. In: Philips. (philips.de [abgerufen am 24. Mai 2018]).

Philips als Markenzeichen – der Ursprung der Bildmarke. In: philips.de

The design story of the new Philips shield. In: YouTube.com, 13. November 2013

Big Brother Awards 2006 – CD-Brenner überwacht Benutzer. In: Focus.de, 20. Oktober 2006

1 comment:

  1. Hello, congratulation for your web. I have a philips k6 from 1967, but unfortunately the line transformer was broken. I would like to repair it but can not find spare.
    Kind regards from Spain.

    ReplyDelete

The most important thing to remember about the Comment Rules is this:
The determination of whether any comment is in compliance is at the sole discretion of this blog’s owner.

Comments on this blog may be blocked or deleted at any time.
Fair people are getting fair reply. Spam and useless crap and filthy comments / scrapers / observations goes all directly to My Private HELL without even appearing in public !!!

The fact that a comment is permitted in no way constitutes an endorsement of any view expressed, fact alleged, or link provided in that comment by the administrator of this site.
This means that there may be a delay between the submission and the eventual appearance of your comment.

Requiring blog comments to obey well-defined rules does not infringe on the free speech of commenters.

Resisting the tide of post-modernity may be difficult, but I will attempt it anyway.

Your choice.........Live or DIE.
That indeed is where your liberty lies.

Note: Only a member of this blog may post a comment.